3,867 research outputs found

    Coordination of Hox identity between germ layers along the anterior-to-posterior axis of the vertebrate embryo

    Get PDF
    During early embryonic development, a relatively undifferentiated mass of cells is shaped into a complex and morphologically differentiated embryo. This is achieved by a series of coordinated cell movements that end up in the formation of the three germ layers of most metazoans and the establishment of the body plan. Hox genes are among the main determinants in this process and they have a prominent role in granting identity to different regions of the embryo. The particular arrangement of their expression domains in early development corresponds to and characterises several future structures of the older embryo and adult animal. Getting to know the molecular and cellular phenomena underlying the correct Hox pattern will help us understand how the complexity of a fully-formed organism can arise from its raw materials, a relatively undifferentiated fertilised egg cell (zygote) and a large but apparently limited repertoire of molecular agents. In the present work I have concentrated on the specific factors, and their mechanism of action, that set up the Hox expression patterns in the gastrula and neurula embryo. I have put special emphasis on the initiation of Hox expression, which takes place first in the non-organiser mesoderm and subsequently in the neuroectoderm. I investigated the role of retinoid signalling and found that it is required during late gastrulation for activation of 3’ Hox genes in the neuroectoderm. Furthermore, I show evidence that the earliest phase of expression in the gastrula mesoderm requires Wnt, but not retinoid, activity. Moreover, the most 3’ Hox genes are direct targets of the Wnt pathway, whereas other Hox genes are indirectly regulated. Finally, I provide preliminary results that suggest a potential mechanism for communication between non-organiser mesoderm and neuroectoderm mediated by HOX protein intercellular signalling. This phenomenon would enable a direct coordination of Hox pattern between the two tissues

    Optical and magnetic properties of ZnCoO thin films synthesized by electrodeposition

    Get PDF
    Ternary Zn1−xCoxO crystalline films with different compositions were grown by electrodeposition. The Co content in the final compound is linked to the initial Co/Zn ratio in the starting solution. X-ray diffraction reveals a wurtzite structure for the Zn1−xCoxO films. Transmittance spectra show two effects proportional to Co content, a redshift of the absorption edge and three absorption bands, which are both interpreted to be due to the Co incorporated into the ZnO lattice. The amount of deposited charge was used to get a precise control of the film thickness. Magnetic measurements point out that Co(II) ions are isolated from each other, and consequently the films are [email protected]

    Persistent gender bias in marine science and conservation calls for action to achieve equity

    Get PDF
    The increasing consideration of gender balance in conservation science and practice has been reflected in the setting of global commitments. Yet, women remain under-represented in science and conservation decision-making. We compiled and analyzed data on the representation of women in hiring, publishing, funding, and leadership positions in European Union marine sciences and conservation. To explore scientists' perceptions of gender imbalance in marine sciences and conservation more broadly, we conducted a global survey and analyzed 764 questionnaires from 42 countries. Participants were also asked to identify measures that promote gender equity. We found a consistent pattern of women being under-representated across institutions and nations characterized by a relatively balanced representation of men and women in early career stages and a growing gap in later stages, with women occupying only 13% to 24% of senior positions. The same pattern was found in publishing, funding, and leadership of research institutes. Survey results demonstrate that most marine scientists are aware of the general and persistent gender bias, and perceive that it may compromise our ability to effectively solve conservation problems. Measures that increase fairness in evaluations (e.g. for hiring) and that support work-life balance ranked high, whereas gender-oriented measures, such as gender-specific scholarships, received less support. Our findings suggest that mechanisms promoting a fairer share of family responsibilities and transparent processes in hiring and evaluation are the most promising path to a more balanced participation of women in scientific leadership and conservation decision-making. Such measures may benefit not only women but diversity more generally

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page

    Green communication for tracking heart rate with smartbands

    Get PDF
    The trend of using wearables for healthcare is steeply increasing nowadays, and, consequently, in the market, there are several gadgets that measure several body features. In addition, the mixed use between smartphones and wearables has motivated research like the current one. The main goal of this work is to reduce the amount of times that a certain smartband (SB) measures the heart rate (HR) in order to save energy in communications without significantly reducing the utility of the application. This work has used an SB Sony 2 for measuring heart rate, Fit API for storing data and Android for managing data. The current approach has been assessed with data from HR sensors collected for more than three months. Once all HR measures were collected, then the current approach detected hourly ranges whose heart rate were higher than normal. The hourly ranges allowed for estimating the time periods of weeks that the user could be at potential risk for measuring frequently in these (60 times per hour) ranges. Out of these ranges, the measurement frequency was lower (six times per hour). If SB measures an unusual heart rate, the app warns the user so they are aware of the risk and can act accordingly. We analyzed two cases and we conclude that energy consumption was reduced in 83.57% in communications when using training of several weeks. In addition, a prediction per day was made using data of 20 users. On average, tests obtained 63.04% of accuracy in this experimentation using the training over the data of one day for each user

    Pairing-based authentication protocol for V2G networks in smart grid

    Full text link
    [EN] Vehicle to Grid (V2G) network is a very important component for Smart Grid (SG), as it offers new services that help the optimization of both supply and demand of energy in the SG network and provide mobile distributed capacity of battery storage for minimizing the dependency of non-renewable energy sources. However, the privacy and anonymity of users¿ identity, confidentiality of the transmitted data and location of the Electric Vehicle (EV) must be guaranteed. This article proposes a pairing-based authentication protocol that guarantees confidentiality of communications, protects the identities of EV users and prevents attackers from tracking the vehicle. Results from computing and communications performance analyses were better in comparison to other protocols, thus overcoming signaling congestion and reducing bandwidth consumption. The protocol protects EVs from various known attacks and its formal security analysis revealed it achieves the security goals.Roman, LFA.; Gondim, PRL.; Lloret, J. (2019). Pairing-based authentication protocol for V2G networks in smart grid. Ad Hoc Networks. 90:1-16. https://doi.org/10.1016/j.adhoc.2018.08.0151169

    Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment

    Full text link
    [EN] Computer networks become complex and dynamic structures. As a result of this fact, the configuration and the managing of this whole structure is a challenging activity. Software-Defined Networks(SDN) is a new network paradigm that, through an abstraction of network plans, seeks to separate the control plane and data plane, and tends as an objective to overcome the limitations in terms of network infrastructure configuration. As in the traditional network environment, the SDN environment is also liable to security vulnerabilities. This work presents a system of detection and mitigation of Distributed Denial of Service (DDoS) attacks and Portscan attacks in SDN environments (LSTM-FUZZY). The LSTM-FUZZY system presented in this work has three distinct phases: characterization, anomaly detection, and mitigation. The system was tested in two scenarios. In the first scenario, we applied IP flows collected from the SDN Floodlight controllers through emulation on Mininet. On the other hand, in the second scenario, the CICDDoS 2019 dataset was applied. The results gained show that the efficiency of the system to assist in network management, detect and mitigate the occurrence of the attacks.This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Project 310668/2019-0, in part by the SETI/Fundacao Araucaria due to the concession of scholarships, and in part by the Ministerio de Economia y Competitividad through the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento, under Grant TIN2017-84802-C2-1-P.Novaes, MP.; Carvalho, LF.; Lloret, J.; Lemes Proença, M. (2020). Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment. IEEE Access. 8(1):83765-83781. https://doi.org/10.1109/ACCESS.2020.2992044S83765837818

    Recycled hybrid material for use as shielding in operations with ionizing radiation

    Get PDF
    One of the most efficient measures to prevent gamma radiation is shielding, which can take the form of protection barriers, storage containers, wall coating, bunkers, or many others aimed at minimizing the exposure of people to radiation. The materials used to this end have not changed much since the invention of X-rays, when materials with high attenuation capacity were employed, such as lead, tungsten, or concrete. These are all high-density materials and, therefore, also very heavy, and some of them are expensive and not environmentally friendly, as they do not have many possibilities with regards to their recycling. Circular economy provides an opportunity to reintroduce subproducts and waste in the same production processes that generated them or as raw matters in others. The use of sustainable materials is one of these options; however, there is little research in the field of radiation protection about the use of recycled material to this end, and there are few alternative sustainable options different from conventional materials that show similar behaviour. In our study, we have designed and built shielded panels called Mixlead® for gammagraphy, made of 100 % recyclable materials with sandwich structures combining polymeric fractions of electric cables and lead-alloy protection sheets used in the packaging of radiographic plates. With a methodology combining shielding calculations and a series of thermomechanical-radiological tests, it was possible to accurately determine the thickness of Mixlead® necessary to perform the tests with security guarantees and meeting sustainability requirements for radioactive sources of Iridium (192Ir) and Selenium (75Se), the use of the former being predominant, with an average activity of 1 GBq. In order to reduce this activity 2 and 10 times, the necessary thickness would be 24 and 79 mm respectively, which represents 3 or 4 layers of Mixlead® material.15 página

    Selectively boron doped homoepitaxial diamond growth for power device applications

    Get PDF
    Diamond lateral growth is a powerful technique for the design and fabrication of diamond-based power electronic devices. Growth orientation affects the diamond deposition in terms of growth rate, surface roughness, and impurity incorporation. It has been shown that the finally grown surface of a patterned substrate can be predesigned based on the growth conditions. Thus, simultaneous growth along different surface orientations yields regions with different properties. In line with this, the incorporation of boron in a microwave plasma enhanced chemical vapor deposition laterally deposited epilayer over a mesa patterned {100}-oriented diamond substrate was studied by cathodoluminescence. It was observed that laterally oriented facets were highly boron doped in contrast to the {100}-oriented surfaces, which did not show any bound exciton emission, related to the doping. This study shows that, by designing the initial pattern and tuning the conditions, it is possible to drive a selective incorporation of boron into the grown layer
    corecore